Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation
نویسندگان
چکیده
Soil is the sink and source of heavy metals (both geogenic and anthropogenic) and plants are the ecosystem regulators, balancing the chemistry of life on earth. However, roots are the only connection between soil and plants, which are the real engineers of ecosystem dynamics responsible for environmental balance and stability. The plant-soil interface termed as ‘rhizosphere’ is a typical zone of soil where the physical, chemical and biological characteristics are different from bulk soil (outside the rhizosphere region). This is mainly controlled by physiological response from plants to the environmental changes through exudation of chemicals from root region and the cascade of chemical (changes in pH and redox potential, release of anions and nutrient transformation) and biological (microbial association) events that follow. The other adaptive mechanisms include root length and area as affected by temperature, moisture and nutrient content of the soil. In the recent years, advanced technologies have lead to significant findings at the micro-level in rhizosphere research, targeting the role of root-soil interface towards nutrient availability and agricultural productivity. However, with increasing human activities (including agriculture), undesirable quantites of heavy metals are being added to the environment thereby resulting in soil contamination. This review will discuss in detail on the processes involved in the (im)mobilisation of heavy metals in and around the root region as affected by chemical (pH and root exudates) and biological (microorganisms) components.
منابع مشابه
Coupled Electro-kinetic Remediation and Phytoremediation of Metal(loid) Contaminated Soils
Soil contamination with heavy metals and metalloids has become a serious environmental problem with rapid industrialization and urbanization [1-3]. Generally, the contamination is resulted from anthropogenic activities such as mining, domestic waste discharge, agricultural production and industrial activities. Heavy metals and metalloids such as Cd, Pb, Cr, Cu, Hg, Cs, Se, Zn and As enter the f...
متن کاملMitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment--a field experiment in Hunan, China.
A field experiment was conducted to investigate the effect of bean stalk (BBC) and rice straw (RBC) biochars on the bioavailability of metal(loid)s in soil and their accumulation into rice plants. Phytoavailability of Cd was most dramatically influenced by biochars addition. Both biochars significantly decreased Cd concentrations in iron plaque (35-81 %), roots (30-75 %), shoots (43-79 %) and r...
متن کاملApplication of Synchrotron X-Ray Microbeam Spectroscopy to the Determination of Metal Distribution and Speciation in Biological Tissues
Resolving the distribution and speciation of metal(loid)s within biological environmental samples is essential for understanding bioavailability, trophic transfer, and environmental risk. We used synchrotron x-ray microspectroscopy to analyze a range of samples that had been exposed to metal(loid) contamination. Microprobe x-ray fluorescence elemental mapping (mSXRF) of decomposing rhizosphere ...
متن کاملMetal removal and associated binding fraction transformation in contaminated river sediment washed by different types of agents
In ex-situ washing, HCl, EDTA and H2O2 solutions can effectively extract heavy metals in river sediment. Nevertheless they often target different sediment components, possibly transforming metal species into more bioavailable and hence toxic ones. This study, in batch settings, investigated the influences of different types of washing agents (i.e. HCl, EDTA and H2O2) on metal (i.e. Cu and Zn) r...
متن کاملAlleviation of Heavy Metal Stress in Plants and Remediation of Soil by Rhizosphere Microorganisms
Increasing concentration of heavy metals (HM) due to various anthropogenic activities is a serious problem. Plants are very much affected by HM pollution particularly in contaminated soils. Survival of plants becomes tough and its overall health under HM stress is impaired. Remediation of HM in contaminated soil is done by physical and chemical processes which are costly, time-consuming, and no...
متن کامل